
Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Functional correctness via refinement

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

15 Octoner 2014

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Outline

1 Abstract Data Types

2 Refinement

3 ADT Transition Systems

4 Phrasing refinement conditions in VCC

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

ADT type

An ADT type is a finite set N of operation names.

Each operation name n in N has an associated input type In
and an output type On, each of which is simply a set of values.

We require that there is a special exceptional value denoted
by e, which belongs to each output type On; and that the set
of operations N includes a designated initialization operation
called init.

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

ADT definition

A (deterministic) ADT of type N is a structure of the form

A = (Q,U,E , {opn}n∈N)

where

Q is the set of states of the ADT,

U ∈ Q is an arbitrary state in Q used as an uninitialized state,

E ∈ Q is an exceptional state.

Each opn is a realisation of the operation n given by
opn : Q × In → Q × On such that opn(E ,−) = (E , e) and
opn(p, a) = (q, e) =⇒ q = E .

Further, we require that the init operation depends only on its
argument and not on the originating state: thus
init(p, a) = init(q, a) for each p, q ∈ Q \ {E} and a ∈ Iinit .

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

ADT type example: Queue

QType

ADT type QType = {init, enq, deq} with

Iinit = {nil},
Oinit = {ok, e},
Ienq = B,
Oenq = {ok, fail , e},
Ideq = {nil},
Odeq = B ∪ {fail , e}.

Here B is the set of bit values {0, 1}, and nil is a “dummy”
argument for the operations init and deq.

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

ADT example: Queue (parameterized by length k) of type
QType

QADT k

QADT k = (Q,U,E , {opn}n∈QType) where

Q = {ε} ∪
⋃k

i=1 Bi ∪ {E}

opinit(q, a) =

{
(ε, ok) if q 6= E
(E , e) otherwise.

openq(q, a) =

{
(q · a, ok) if q 6= E and |q| < k
(E , e) otherwise.

opdeq(q, a) =

{
(q′, b) if q 6= E and q = b · q′
(E , e) otherwise.

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Language of sequences of operation calls of an ADT

An ADT A = (Q,U,E , {opn}n∈N) of type N induces a
(deterministic) transition system SA = (Q,ΣN ,U,∆) where

ΣN = {(n, a, b) | n ∈ N, a ∈ In, b ∈ On} is the set of operation
call labels corresponding to the ADT type N. The action label
(n, a, b) represents a call to operation n with input a that
returns the value b.
∆ is given by

(p, (n, a, b), q) ∈ ∆ iff opn(p, a) = (q, b).

We define the language of initialised sequences of operation
calls of A, denoted Linit(A), to be L(SA) ∩ ((init,−,−) ·Σ∗N).

We say a sequence of operation calls w is exception-free if no
call in it returns the exceptional value e (i.e. w does not
contain a call of the form (−,−, e)).

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Example: Transition system induced by QADT 2

TS induced by QADT 2

U

ε

(enq, 0, ok)

(init, nil, ok)

(enq, 1, ok)(deq, nil, e)

E

(enq, 0, ok)

00 01

(enq, 1, ok)

1110

(−,−, e)

(enq, 0, e) (enq, 0, e)

(enq, 0, ok)(enq, 1, ok)

(deq, nil, 1)(deq, nil, 0)

0 1

(enq, 1, e) (enq, 1, e)

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Refinement between ADT’s

Let A and B be ADT’s of type N. We say B refines A, written

B � A,

iff each exception-free sequence in Linit(A) is also in Linit(B).

Examples of refinement:

QADT 3 refines QADT 2.

Let QADT ′2 be the version of QADT 2 where we check for
emptiness/fullness of queue and return fail instead of e. Then
QADT ′2 refines QADT 2.

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Transitivity of refinement

It follows immediately from its definition that refinement is
transitive:

Proposition

Let A, B, and C be ADT’s of type N, such that C � B, and
B � A. Then C � A.

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Refinement Condition (RC)

Let A = (Q,U,E , {opn}n∈N) and A′ = (Q ′,U ′,E ′, {opn}n∈N) be
ADT’s of type N. We formulate an equivalent condition for A′ to
refine A, based on an “abstraction relation” that relates states of
A′ to states of A. We say A and A′ satisfy condition (RC) if there
exists a relation ρ ⊆ Q ′ × Q such that:

(init) Let a ∈ Iinit and let (qa, b) and (q′a, b
′) be the resultant states

and outputs after an init(a) operation in A and A′
respectively, with b 6= e. Then we require that b = b′ and
(q′a, qa) ∈ ρ.

(sim) For each n ∈ N, a ∈ In, b ∈ On, and p′ ∈ Q ′, with (p′, p) ∈ ρ,

whenever p
(n,a,b)−−−−→ q with b 6= e, then there exists q′ ∈ Q ′

such that p′
(n,a,b)−−−−→ q′ with (q′, q) ∈ ρ.

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Illustrating condition (RC)

(RC-init):

=⇒

(init, a, b) qa (init, a, b) qa

q′
a

(init, a, b′)

ρ

q′
a

(init, a, b′)

and b = b′

(RC-sim):

=⇒

p

p′

q
(n, a, b)

p

p′

q
(n, a, b)

q′

ρ ρ ρ

(n, a, b)

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Condition (RC) is necessary and sufficient for refinement

Theorem

Let A and A′ be two ADT’s of type N. Then A′ � A iff they
satisfy condition (RC).

Exercise

Find an abstraction relation ρ for which QADT 2 and QADT 3

satisfy condition (RC).

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Condition (RC) is necessary and sufficient for refinement

Theorem

Let A and A′ be two ADT’s of type N. Then A′ � A iff they
satisfy condition (RC).

Exercise

Find an abstraction relation ρ for which QADT 2 and QADT 3

satisfy condition (RC).

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Why ADT Transition Systems

To reason about imperative implementations of ADT’s (read
transition-system based implementions)

To do so compositionally.

C Implemention
of

Scheduler

C Implemention

of

Schedulerqueue.c

queue−simple

ADT TS Client ADT−TS

Client TS

T

T

P1

P

US

US

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

A C implementation of a queue

1: int A[MAXLEN]; 11: void enq(int t) {

2: unsigned beg, end, len; 12: if (len == MAXLEN)

3: 13: assert(0); /* exception */

4: void init() { 14: A[end] = t;

5: beg = 0; 15: if (end < MAXLEN-1)

6: end = 0; 16: end++;

7: len = 0; 17: else

8: } 18: end = 0;

9: 19: len++;

10: int deq() { ... } 20: }

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Example: ADT Transition System induced by queue.c

Part of the ADT TS induced by queue.c, showing init and enq

opns

in(0) in(1)

(0, 〈〉, 0, 0, 0, u)

(8, 〈〉, u, u, u)

(9, 〈〉, 0, u, u)

(10, 〈〉, 0, 0, u)

in(nil)

q->begin = 0

q->end = 0

(13, 〈〉, 0, 0, 0, 0)

q->len == MAXLEN

q->A[q->end] = t

q->end<MAXLEN-1

(0, 〈〉, u, u, u)

ret(ok)

q->len = 0

(10, 〈〉, 0, 0, 0)

(15, 〈〉, 0, 0, 0, 0)

(16, 〈0〉, 0, 0, 0, 0)

(17, 〈0〉, 0, 0, 0, 0)

(20, 〈0〉, 0, 1, 0, 0)

q->end++

(13, 〈〉, 0, 0, 0, 1)

(15, 〈〉, 0, 0, 0, 1)

(16, 〈1〉, 0, 0, 0, 1)

(17, 〈1〉, 0, 0, 0, 1)

(20, 〈1〉, 0, 1, 0, 1)

(0, 〈1〉, 0, 1, 1, u) (0, 〈0〉, 0, 1, 1, u)

q->len++

(21, 〈0〉, 0, 1, 1, 0) (21, 〈1〉, 0, 1, 1, 1)

Qc :

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

ADT induced by an ADT TS

An ADT transition system like S above induces an ADT AS of
type N given by AS = (Qc ∪ {E},U,E , {opn}n∈N) where for each
n ∈ N, p ∈ Qc ∪ {E}, and a ∈ In, we have:

opn(p, a) =

(q, b) if there exists a path of the form

p
in(a)−−−→ r1

l1−→ · · · lk−1−−→ rk
ret(b)−−−→ q in S

(E , e) otherwise.

We say that an ADT TS S ′ refines another ADT TS S iff AS′
refines AS .

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Substitutability Claim

We claim that refinement is “substitutive” and gives us a
compositional way of reasoning about ADT implementations:

Theorem

Let U be an M-client ADT transition system of type N, and B and
C be ADT’s of type M such that C � B. Then we have
AU [C] � AU [B].

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Refinement Conditions in VCC: Using a ghost model

(init-a) func
M,P
init terminates on all joint state-input pairs satisfying preMinit .

(init-b) func
M,P
init (Xinit x)

(requires preMinit)

(ensures invρ ∧ yMinit = yPinit) {
// body of funcMinit
// body of funcPinit

}
(sim-a) For each operation n, funcM,P

n must terminate on all state-input
pairs satisfying preMn ∧ invρ.

(sim-b) For each operation n:

funcM,P
n (Xn x)

(requires preMn ∧ invρ)

(ensures invρ ∧ yMn = yPn) {
// body of funcMn
// body of funcPn

}

(init-a) func
M,P
init terminates on all joint state-input pairs satisfying preMinit .

(init-b) func
M,P
init (Xinit x)

(requires preMinit)

(ensures invρ ∧ yMinit = yPinit) {
// body of funcMinit
// body of funcPinit

}
(sim-a) For each operation n, funcM,P

n must terminate on all state-input
pairs satisfying preMn ∧ invρ.

(sim-b) For each operation n:

funcM,P
n (Xn x)

(requires preMn ∧ invρ)

(ensures invρ ∧ yMn = yPn) {
// body of funcMn
// body of funcPn

}

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Some examples: store with get/put

struct store { int get(void) {

int val1; if (s.flag)

int val2; return s.val1;

int flag; else

} s; return s.val2;

}

void init() {

s.flag = 1;

s.val1 = 0;

}

void set(int x) {

if (s.flag)

s.val2 = x;

else

s.val1 = x;

s.flag = (1 - s.flag);

}

Abstract Data Types Refinement ADT Transition Systems Phrasing refinement conditions in VCC

Overall strategy for refinement

Application

Interpreter

Scheduler

Scheduler

ADT

ADT

C Implemention
of

Scheduler

C Implemention

of

Scheduler

T

T

T

TxList

xListMap

M2

M1

P1

P

T [M1]

T [M2]

T [US [xListMap]]

T [US [xList]]

US

US

	Abstract Data Types
	Refinement
	ADT Transition Systems
	Phrasing refinement conditions in VCC

